Math 115
Fall 2018
Lecture 22

$$
\begin{aligned}
& ? a^{2}+b^{2}=c^{2} ? \\
& y=m x+b d=r t
\end{aligned}
$$

factor out the GCF:
(1) $36 x^{3}+24 x=12 x\left(3 x^{2}+2\right)$
(2) $100 x^{5}-16 x^{3}=4 x^{3}\left(25 x^{2}-4\right)$
\rightarrow can be factored more.
(3) $x(x+2 y)-(x+2 y)$

$$
=(x+2 y)(x-1)
$$

Factor by grouping:

$$
\begin{aligned}
& \text { (1) } \underbrace{x^{2}+2 x}+\underbrace{x y+2 y} \\
& =x(x+2)+y(x+2)=(x+2)(x+y)
\end{aligned}
$$

(2) $\underbrace{4 x^{3}+3 x^{2}}+4 x+3$

$$
=x^{2}(4 x+3)+1(4 x+3)=(4 x+3)\left(x^{2}+1\right)
$$

(3) $\underbrace{x^{5}+2 x^{5} y}-6 y-3$

$$
=x^{5}(1+2 y)-3(2 y+1)=(2 y+1)\left(x^{5}-3\right)
$$

find the missing factor:
(1) $x^{2}+11 x+30=\underbrace{(x+5)(x+6)}_{6 x}$
(2) $x^{2}-x-42=\left(x-\begin{array}{c}-7)(x+6) \\ -7 x \\ 6 x\end{array}\right)$
(3) $x^{3}+6 x^{2}-27 x=(x-3)\left(x^{2}+9 x\right)=x(x-3)(x+9)$

Factor Completely:

$$
\begin{aligned}
& \text { (1) } x^{2}+8 x+15 \\
& P=15 \\
& S=8 \\
& 3 \xi_{1}^{2} \\
& =\underbrace{x^{2}+3 x}+\underbrace{+5 x+15} \\
& =x(x+3)+5(x+3) \\
& =(x+3)(x+5)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } x^{2}-11 x+24 \\
& P=24 \\
& S=-11 \\
& -8 \xi^{1}-3 \\
& =\underbrace{x^{2}-8 x}-3 x+24 \\
& =x(x-8)-3(x-8) \\
& =\underbrace{(x-8)(x-3)}\left\{\begin{array}{l}
4) y^{2}+3 y-54 \\
P=-54 \\
S=3 \\
9 \xi^{2}-6 \\
=y^{2}+9 y-6 y-54 \\
=y(y+9)-6(y+9) \\
=(y+9)(y-6)
\end{array}\right.
\end{aligned}
$$

Factor out the GCF first, then factor the rest:

$$
\begin{aligned}
& \text { (1) } x^{3} y+x^{2} y-6 x y=x y\left(x^{2}+x-6\right) \\
& =x y(x+3)(x-2)
\end{aligned}
$$

$$
\text { (2) } \begin{aligned}
&(3 x-2) x^{2}-13(3 x-2) x+40(3 x-2) \\
&=(3 x-2)\left(x^{2}-13 x+40\right) \\
&=(3 x-2)(x-5)(x-8) \\
& 2,20 \\
& 4,10 \\
& 5,8
\end{aligned}
$$

Factor completely:

$$
\left\{\begin{array}{lrr}
\text { (2) } 12 x^{2} & -2-5 x \\
=12 x^{2} & -5 x & -2 \\
P=-24 & 1,-24 \\
S=-5 & -24 & 2,-12 \\
3 \xi_{1}-8 & 3,-8 \\
4,-6 \\
=12 x^{2}+3 x & -8 x-2 \\
=3 x(4 x+1) & -2(4 x+1)
\end{array}\right.
$$

$$
=(4 x+1)(3 x-2)
$$

$$
\begin{aligned}
& \text { (1) } 2 x^{2}+7 x+6 \\
& P=12 \\
& S=7 \\
& 3 \& 4 \\
& =\underbrace{2 x^{2}+3 x}+4 x+6 \\
& =x(2 x+3)+2(2 x+3) \\
& =(2 x+3)(x+2)
\end{aligned}
$$

factor Completely:

$$
\begin{aligned}
& 8 x^{3}+5 x-14 x^{2} \\
& =8 x^{3}-14 x^{2}+5 x \\
& \begin{array}{l}
=x\left(8 x^{2}-14 x+5\right) \\
S=-14^{2}
\end{array} \underbrace{8 x^{2}}_{40} \\
& -10 \xi-4 \\
& 8 x^{2}-10 x-\underbrace{-4 x+5} \\
& =2 x(4 x-5)-1(4 x-5) \\
& \Delta x(4 x-5)(2 x-1) \\
& \text { order } \checkmark \\
& -1,40 \\
& -2,-20 \\
& -4,-10 \\
& -5,-8
\end{aligned}
$$

Hint: GCF ${ }^{\sqrt{\varepsilon}}$
factor Completely: $6 x^{2}-11 x y+3 y^{2}$

$$
\begin{aligned}
& P=18 \\
& S=-11 \\
& -1,-18 \\
& -2,-9 \\
& -3,-6
\end{aligned}
$$

$$
\begin{aligned}
& =2 x(3 x-y)-3 y(3 x-y) \\
& =(3 x-y)(2 x-3 y)
\end{aligned}
$$

Special Factoring with Binomials:
(1) Sum of two squares: $A^{2}+B^{2}$

Prime
(2) Difference of two squares: $A^{2}-B^{2}$

$$
\begin{aligned}
& A^{2}-B^{2}=(A+B)(A-B) \\
\text { ex: } & x^{2}+100=x^{2}+10^{2} \quad \text { Prime } \\
\text { ex: } & x^{2}-49=x^{2}-7^{2}=(x+7)(x-7)
\end{aligned}
$$

ex: $4 x^{2}+25=(2 x)^{2}+5^{2} \quad$ Prime
ex: $\quad 25 x^{2}-36 y^{2}=(5 x)^{2}-(6 y)^{2}$

$$
=(5 x+6 y)(5 x-6 y)
$$

ex: $100 x^{3}-49 x$
Hint: GCF first

$$
\begin{aligned}
& =x\left(100 x^{2}-49\right) \quad \text { Firs } \\
& =x\left[(10 x)^{2}-(7)^{2}\right]=x(10 x+7)(10 x-7)
\end{aligned}
$$

factor: $x^{2}(x+6)-36(x+6)$ Hint:

$$
\begin{aligned}
& =(x+6)\left(x^{2}-36\right) \\
& =(x+6)\left(x^{2}-6^{2}\right) \\
& =(x+6)(x+6)(x-6) \\
& =(x+6)^{2}(x-6)
\end{aligned}
$$

Special Factoring with Binomials:
(1) Sum of two squares: $A^{2}+B^{2}$

Prime
(2) Difference of two squares: $A^{2}-B^{2}$

$$
A^{2}-B^{2}=(A+B)(A-B)
$$

(3) Sum of two Cubes: $A^{3}+B^{3}$

$$
\begin{gathered}
A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right) \\
x^{3}+27=x^{3}+3^{3}=(x+3)\left(x^{2}-3 x+9\right)
\end{gathered}
$$

factor: $8 x^{3}+125=$

$$
\begin{aligned}
& (2 x)^{3}+(5)^{3}=(\underbrace{2 x+5})\left(4 x^{2}-10 x+25\right) \\
& 27 x^{3}+1000 y^{3}= \\
& \begin{aligned}
&(3 x)^{3}+(10 y)^{3}=(\underbrace{3 x+10 y)\left(9 x^{2}-30 x y+100 y^{2}\right)} \\
& \begin{aligned}
64 x^{3}+125 y^{3} & =(4 x)^{3}+(5 y) \\
& =(4 x+5 y)\left(16 x^{2}-20 x y+25 y^{2}\right)
\end{aligned}
\end{aligned} .=\underbrace{3}
\end{aligned}
$$

Special Factoring with Binomials:
(1) Sum of two squares: $A^{2}+B^{2}$

Prime
(2) Difference of two squares: $A^{2}-B^{2}$

$$
A^{2}-B^{2}=(A+B)(A-B)
$$

(3) Sum of two Cubes: $A^{3}+B^{3}$

$$
A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)
$$

(4) Difference of Two cubes: $A^{3}-B^{3}$

$$
R^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)
$$

factor $x^{3}-1000$

$$
\begin{aligned}
& =x^{3}-10^{3} \\
& =(x-10)\left(x^{2}+10 x+100\right)
\end{aligned}
$$

factor

$$
\begin{aligned}
& 2 x^{3}-16 y^{3} \quad \text { Hint: GCF } \\
= & 2\left(x^{3}-8 y^{3}\right) \\
= & 2\left[x^{3}-(2 y)^{3}\right]=2(x-2 y)\left(x^{2}+2 x y+4 y^{2}\right)
\end{aligned}
$$

factor Completely:

$$
\begin{aligned}
& 4 x^{5}-500 x^{2} y^{3} \quad \text { Hint: GCF } \\
= & 4 x^{2}\left(x^{3}-125 y^{3}\right) \\
= & 4 x^{2}\left[(x)^{3}-(5 y)^{3}\right] \\
= & 4 x^{2}(\underbrace{x-5 y})\left(x^{2}+5 x y+25 y^{2}\right)
\end{aligned}
$$

factor Completely

$$
\begin{aligned}
& x^{3}\left(x^{2}-9\right)-27\left(x^{2}-9\right) \\
= & \left(x^{2}-9\right)\left(x^{3}-27\right) \\
= & (x+3)(x-3)(x-3)\left(x^{2}+3 x+9\right) \\
= & (x+3)(x-3)^{2}\left(x^{2}+3 x+9\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Factor: } 81 x^{2}-36 \quad \text { Always do } \\
& =9\left(9 x^{2}-4\right) \quad \text { GaFF first } \\
& =9\left[(3 x)^{2}-(2)^{2}\right] \\
& =9(3 x+2)(3 x-2)
\end{aligned}
$$

Factor Completely:

$$
\begin{aligned}
& 250 x^{4} y-432 x y^{7} \\
= & 2 x y\left(125 x^{3}-216 y^{6}\right) \\
= & 2 x y\left[(5 x)^{3}-\left(6 y^{2}\right)^{3}\right] \\
= & 2 x y(\underbrace{5 x-6 y^{2}})\left(25 x^{2}+30 x y^{2}+36 y^{4}\right)
\end{aligned}
$$

Special Factoring with Trinomials:

$$
\begin{aligned}
& A^{2}+2 A B+B^{2}=(A+B)^{2} \\
& x^{x^{2}}+20 x+100=(\underbrace{x+10})^{2} \\
& 25 x^{2}+\underset{4}{60 x}+36=(\underbrace{5 x+6 x \cdot 6})^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 100 x^{2}+220 x y+121 y^{2} \\
& =\underbrace{(10 x+11 y)^{2}}_{2 \cdot 10 x \cdot 11 y} \\
& 64 x^{4}+80 x^{2} y^{3}+25 y^{6} \\
& =\left(8 x^{2}+5 y^{3}\right)^{2}
\end{aligned}
$$

Special Factoring with Trinomials:

$$
\begin{aligned}
& A^{2}+2 A B+B^{2}=(A+B)^{2} \\
& A^{2}-2 A B+B^{2}=(A-B)^{2}
\end{aligned}
$$

Factor $x^{2}-14 x+49=(x-7)^{2}$
Factor $x^{3}-50 x^{2}+625 x=$

$$
\begin{aligned}
& x\left(x^{2}-50 x+625\right)= \\
& x(x-25)^{2}
\end{aligned}
$$

factor Completely:

$$
\begin{aligned}
& 50 x^{3} y-40 x^{2} y^{2}+8 x y^{3} \\
= & 2 x y\left[25 x^{2}-20 x y+4 y^{2}\right] \\
= & 2 x y(\underbrace{5 x-2 y}_{2})^{2}
\end{aligned}
$$

Factor $x^{6}-64$ Completely Start with difference of two squares.

$$
\begin{aligned}
x^{6}-64 & =\left(x^{3}\right)^{2}-(8)^{2} \\
& =\left(x^{3}+8\right)\left(x^{3}-8\right) \\
& =\left(x^{3}+2^{3}\right)\left(x^{3}-2^{3}\right) \\
= & (x+2)\left(x^{2}-2 x+4\right)(x-2)\left(x^{2}+2 x+4\right) \\
= & (x+2)(x-2)\left(x^{2}-2 x+4\right)\left(x^{2}+2 x+4\right)
\end{aligned}
$$

